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Motivated by the physics of molecular-beam epitaxial (MBE) growth, we present a detailed numer-
ical study of the dynamic scaling behavior of two atomistic solid-on-solid kinetic growth models in
(1+1) dimensions in the presence of surface diffusion under a strong chemical bonding environment.
Our goal is to relate stochastic molecular-beam epitaxial growth models with the existing statistical-
mechanical-driven dynamical growth models. In the first model, which is the usual stochastic MBE
growth model, diffusion of surface atoms follows an Arrhenius activation behavior. The effective
growth exponents a.sg and fBes, calculated as functions of the temperature, show a crossover from
random deposition (8 = 0.5) to 8 = 0.375 and a = 1.5 at intermediate temperatures, and then
to 8 =~ 0 and a = 0 at high temperatures. In the second model, which is a manifestly nonequi-
librium dynamical model, newly arrived atoms instantaneously migrate to the nearest kink sites,
with probability p:, and within a diffusion length ¢. After finding a kink site they are allowed to
break two bonds and make a nearest-neighbor hop with probability p2. Here we see a behavior
qualitatively similar to that in the first model, but, additionally, for p2 # 0, a crossover to the
Edwards-Wilkinson universality is observed. Surface morphologies produced by these models are
presented with a detailed discussion of the scaling exponents, finite-size effects, and conditions for
smooth growth. i
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I. INTRODUCTION

Nonequilibrium growth dynamics of interfaces, where
matter is continuously added to a (d — 1)-dimensional
substrate to drive the interface in the “height” direction,
has been an intense area of research activity [1-4] during
the past ten years. Part of this interest is technolog-
ically motivated because a number of thin-film growth
techniques, such as sputtering, chemical vapor deposi-
tion, molecular-beam epitaxy (MBE), etc., use far-from-
equilibrium deposition methods. But, much of the recent
interest in the nonequilibrium interface growth dynam-
ics is fundamental—the problem is a simple example of a
self-affine fractal growth process exhibiting generic scale
invariance [2] where theoretical techniques of dynamical
critical phenomena should be applicable giving us insight
into a problem which is manifestly a nonequilibrium sta-
tistical mechanical problem. In particular, the universal-
ity class of various growth processes and the dynamical
morphologies of the evolving surfaces have attracted a
great deal of attention. Our goal in this paper is to study
in some details the dynamics of a particular atomistic
solid-on-solid model of stochastic interface growth where
surface diffusion or atomistic hopping in a strong chem-
ical bonding environment plays an essential role. This
growth model, which has recently been introduced by
Wolf and Villain [5], and by us [6], is inspired by the
physics of epitaxial growth where atomistic surface dif-
fusion is known to be a significant kinetic process. We
emphasize that all the results presented in this paper are
on one-dimensional substrates, and the growth, therefore,
isin d = 1+ 1 dimensions. (Real MBE growth obviously
takes place in d = 2 + 1 dimensions.) Our reason for un-
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dertaking such a detailed analysis of a particular kinetic
growth model is only in part due to its possible connec-
tion with experimentally relevant epitaxial growth but
mostly due to the fact that this surface-diffusion-driven
kinetic model represents a new dynamical growth univer-
sality class which has not been anticipated before in the
literature, in contrast to other well-known growth uni-
versality classes such as the Edwards-Wilkinson (7] (EW)
or the Kardar-Parisi-Zhang [8] (KPZ) models which have
been exhaustively studied. We feel that a detailed numer-
ical analysis of the one-dimensional (1D) MBE growth
model introduced by us [6] and by Wolf and Villain [5]
would be useful in putting it in perspective with the ex-
isting body of literature on stochastically driven interface
growth models. Such a comprehensive numerical analysis
of the 1D MBE growth model is our goal in this paper.

According to the dynamic scaling hypothesis [9] of
nonequilibrium growth, the width or the root-mean-
square fluctuation of the height W(L,t) of a growing in-
terface depends on the system size L and the growth time
t according to the scaling relationship

W(L,t) = L*f(t/L*/P) (1)

where f is a scaling function satisfying f(oco) ~ const and
f(z) ~ zP for small z. It can be shown that this expres-
sion is a consequence of the statistical scale invariance
of the growth process [2], which is present if a suitable
simultaneous rescaling of length, height, and time (by
factors b > 0, b=, and b/, respectively) does not alter
the statistical properties of the surface fluctuations. Ac-
cording to Eq. (1) and the properties of the function f,
for intermediate times 1 < t <« 7, where 7 (~ L? where
z = a/f) is a model-dependent saturation time, the in-
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terface width for a fixed substrate size L has a power-law
dependence on t,

W ~ P, (2)

and for t > 7, it saturates to a time-independent value
Wsat = W(t > 7), which scales with the system size L
as

Wias ~ L°. (3)

The dynamical critical exponents o and 3 characterize
completely the asymptotic scaling properties of the sur-
face fluctuations of a given growth model and determine
its universality class. A number of kinetic growth models
have been studied in the light of this scaling hypothesis,
and several different universality classes characterized by
different sets of values of & and B have been identified.

There have been three alternative types of discrete
atomistic simulation-based theoretical approaches to the
study of stochastically driven interface growth. The most
direct technique has been to use a real-time dynamical
simulation, such as molecular dynamics or Monte Carlo
method, to study specific systems. Using empirical in-
formation for various kinetic parameters and assuming
Arrhenius activation behavior for the operative kinetic
processes (e.g., surface diffusion as simulated by atom-
istic hopping and evaporation or desorption), stochas-
tic Monte Carlo simulation within the lattice-gas model
has been reasonably successful in quantitatively model-
ing several aspects of real Si and GaAs MBE growth.
While being modestly successful in providing a phe-
nomenological description of real MBE growth, these ac-
tivated Arrhenius-type stochastic simulations are neces-
sarily limited by small system sizes and simulation times
and have not provided much insight into the generic scale
invariance or dynamical critical properties of epitaxial
growth. These temperature-dependent realistic stochas-
tic simulations suffer from strong finite-size and crossover
effects in the critical phenomena sense because the simu-
lation model necessarily involves several competing time
scales (or, equivalently, kinetic rates). In addition to
the atomistic deposition rate, there are several differ-
ent hopping rates associated with various diffusion pro-
cesses (and also a desorption rate if evaporation is im-
portant). We will refer to this class of models as stochas-
tic Arrhenius models. The second technique of study-
ing stochastically driven interface growth, aimed specif-
ically at studying the kinetic roughening phenomenon,
treats the growth process as a manifestly nonequilibrium
phenomenon simulated by random deposition and local
atomistic rules for relaxation and incorporation of the
deposited particles. The relaxation process is instan-
taneous and the only time scale in the problem is set
by the deposition rate. Eden growth, random deposi-
tion with relaxation [10, 11], and ballistic deposition [12,
9, 1] are well-known examples of such discrete growth
models. Presumably, the local atomistic rules for de-
position, relaxation, and eventual incorporation in these
manifestly nonequilibrium simulation models are moti-
vated by the essential kinetic processes governing some
real growth phenomenon that one is interested in. We
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refer to this class of nonequilibrium “toy” models as ki-
netic growth models. Clearly, kinetic growth models,
while catching the essence of a growth process, are less
physical than the stochastic Arrhenius simulations. A
third class of discrete growth simulation which has also
been extensively used employs some microscopic lattice
gas Hamiltonian-driven dynamical Monte Carlo simula-
tion to study nonequilibrium growth phenomenon. The
single-step model and the restricted solid-on-solid model
are examples of this kind of growth simulation. Here the
growth simulation itself is not as physically relevant as
the other two kinds of simulations discussed above, but
the asymptotic critical properties of these models may de-
scribe some suitable growth universality class (e.g., the
equilibrium and the nonequilibrium versions of the re-
stricted solid-on-solid are known to belong to EW and
KPZ universality classes, respectively). In this paper we
present numerical results based on the first two types
of growth modeling only, and therefore we do not dis-
cuss further the last class of models. While the above-
mentioned discrete atomistic simulations have been use-
ful in elucidating various dynamical aspects of many
different specific growth models, an important question
from the theoretical perspective has been the viability of
constructing continuum differential equations, the clas-
sic examples being EW and KPZ equations (Appendix),
which correctly describe the coarse-grained large-scale,
long-wavelength, long-time, asymptotic behavior of the
dynamical evolution of stochastically driven growing in-
terfaces. The goal is to construct continuum equa-
tions whose dynamical critical properties are the same
as those of the various discrete kinetic growth models so
as to establish one-to-one connections between cellular
automata-type local atomistic rule-driven growth models
and coarse-grained continuum spatiotemporal partial dif-
ferential equations. We emphasize that, even though sev-
eral examples currently exist in the literature where one-
to-one connections between discrete atomistic growth
models and continuum differential equations have been
established at least for the dynamical critical properties
of the growth model (e.g., Eden model and ballistic depo-
sition are thought to be described by the KPZ equation;
random deposition with relaxation model corresponds to
the EW equation), we know of no theoretical reason to
believe that such a continuum description of atomistic lo-
cal discrete growth models is always possible. In particu-
lar, there may be a subtle problem with the existence of
suitable coarse-grained single-valued “height” variables
(for which continuum partial differential equations are to
be written down) for models with overhangs and vacan-
cies or for models with arbitrarily large kinetic surface
roughness. While we will make connections between our
discrete atomistic growth simulation results and contin-
uum equations, this is not the main thrust of this pa-
per, partly because the 1D MBE simulation model (a
stochastic Arrhenius model) and the related kink diffu-
sion model (a kinetic growth model) whose results we are
presenting in this paper seem to correspond (at least, in
one substrate dimension) to the continuum linear fourth-
order differential equation which was first written down
by Herring [13] forty years ago in the context of chemical
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potential gradient driven mass diffusion. The issue that
we address in some detail is the question of the extent
to which the dynamic scaling hypothesis is obeyed by
our atomistic simulation results. The EW and the KPZ
universality, as discussed in the Appendix, are the linear
and nonlinear versions of the appropriate second-order
continuum partial differential equations for nonequilib-
rium growth. Because any other term in the contin-
uum growth equation must necessarily be higher order
(in fact, at least fourth order), the asymptotic proper-
ties of any growth model must necessarily be dominated
by the second-order terms (in fact, by the KPZ nonlin-
earity) if these second-order terms are actually present
in the corresponding growth equation. In particular, as-
suming the real growth equation to be that given by Eq.
(A1) containing all the symmetry-allowed second- and
fourth-order terms, the question of crossover becomes
significant in the nonasymptotic regime. In fact, in the
1D MBE growth simulation we find clear evidence for
a crossover from the kink diffusion universality studied
by us (and by Wolf and Villain) to the EW universality
at high temperatures when two-bond cutting processes
become significant. In our conservative (no desorption,
overhang, or vacancy) solid-on-solid (SOS) growth sim-
ulation the KPZ nonlinearity is not allowed and, as we
have mentioned above, only the linear fourth-order term
shows up in our d = 1+ 1 simulation. The reason for the
absence of the fourth-order nonlinearity in the 1D MBE
or the kink diffusion growth model in one substrate di-
mension is not completely understood yet. (It is possible
that this is an extremely slow crossover effect.)

Some of the basic atomistic growth models represent-
ing each known universality class and their correspond-
ing continuum models are now briefly described below.
(Some details of the continuum description of growth dy-
namics are provided in the Appendix.)

The random deposition (RD) model consists of parti-
cles falling randomly onto the deposit, getting attached
to the top of the columns in which they are dropped.
The height of the columns follow a Poisson distribution,
and therefore W ~ t1/2 ie., 8 = 1/2 for all dimensions.
Since the different columns grow independently of each
other, the surface width never reaches the steady state of
saturation, and we can say that & = co. Pure RD growth
involves no correlation between neighboring columns and
is therefore unrealistic.

In random deposition with surface relaxation (RDR)
[10,11], particles are randomly dropped onto the surface,
but they are allowed to relax within a finite distance, un-
til they find the height minima in the searched areas [see
Fig. 1(a)]. Numerical simulations give § = 1/4 (0) and
a =1/2 (0) in d = 2 (3) dimensions. The corresponding
continuum model is the Edwards-Wilkinson equation [7]
[see Appendix, Eq. (A6)].

Ballistic deposition (BD) [12, 9, 1] differs from RD or
RDR in the fact that an arriving particle will stick to
the deposit at its first encounter with an atom in the de-
posit within a nearest-neighbor distance [Fig. 1(b)]. That
is, the new particle may stick to the side of a high step
rather than sliding all the way down to the top of the
column randomly assigned to it. In d = 2, the numerical
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simulations indicate  ~ 1/3 and a ~ 1/2, in agreement
with the growth equation proposed by Kardar, Parisi,
and Zhang [8] [Eq. (A5)]. In d = 3, there seems to
be numerical agreement between atomistic models and
the KPZ equation (Appendix), but the situation is not
as well established as for d = 2, in part because there
are no reliable theoretical estimates of 8 and «. Many
other atomistic models belong to the BD-KPZ universal-
ity class, such as the restricted solid-on-solid model of
Kim and Kosterlitz [14] and the well-known Eden model.

In contrast to the above three kinetic growth mod-
els which have been extensively studied, the kink diffu-
sion (KD) models recently introduced Wolf and Villain
[5] and by us [6] have not been studied widely. In these
models, particles fall randomly onto the deposit and dif-
fuse within a finite distance to the nearest kink site to
maximize [5] or simply increase [6] its local coordination
number [Fig. 1(c)]. Simulations in (1+1) dimensions in-
dicate that these models belong to a universality class
different from those mentioned above, since the calcu-
lated exponents are 3 ~ 0.375 and a ~ 1.3 — 1.4. These
values are very close to the ones obtained with a linear

FIG. 1. Some typical situations depicting the rules of de-
position and relaxation of atoms in the various kinetic growth
models described in the text. (a) Random deposition with re-
laxation (RDR), (b) ballistic deposition (BD), (c) kink diffu-
sion model (KD), (d) model 2, and (e) Lai-Das Sarma model
(LDS). Notice that, in a given model, the arrows represent
possible moves of the freshly landed atoms, but the probabil-
ities for those moves are not all the same.
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Langevin equation [Eq. (A7)] describing mass diffusion
under a chemical potential gradient [13]. In Sec. III we
present extensive numerical results for the KD model as
defined in Ref. [6], and we also generalize it to allow parti-
cles to leave the kink sites by breaking two bonds [model
2, shown in Fig. 1(d) and described in Sec. III]. This
generalization provides a more complete connection be-
tween the simplified kinetic growth model and the more
realistic stochastic Arrhenius 1D MBE model.

Lai and Das Sarma (LDS) [15] have recently introduced
a kinetic growth model similar to the KD model, but with
the important difference that if an atom falls in a kink
site (with an atom underneath and a nearest neighbor
on the side) it is allowed to break its two bonds and
jump up or down [see Fig. 1(e)]. This model belongs to a
new universality class, since its exponents are, according
to the simulation, 8 = 0.340 £+ 0.015 and o = 1.05 %+
0.10, in close agreement with a fourth-order nonlinear
growth equation [Eq. (A8)] also analyzed in their paper
by renormalization-group techniques. We do not further
discuss this model since the LDS nonlinearity does not
show up in our simulations.

Very recently [16], Das Sarma and Ghaisas studied a
number of kinetic growth models and found evidence that
some of their models in (2+41) dimensions realize the uni-
versality class of Eq. (A9) with v = 0 and A\, = 0.

Many numerical studies in relation to the models de-
scribed above have been done in recent years, especially
in the rich universality class of ballistic deposition and
the KPZ equation (for references see Ref. [1]). How-
ever, few efforts have been made to connect the dynam-
ical scaling theory of these models with realistic growth
simulations as carried out by stochastic Arrhenius-type
models. Also, the corrections to scaling due to finite-size
effects and multiple length and time scales, which may
be more relevant to the experimental growth conditions
than the asymptotic properties, have not been investi-
gated thoroughly. The goal of this paper is then to study
the 1D MBE model and the KD model numerically and
understand them as a self-organized dynamical critical
phenomenon in some details.

The two growth models studied in this paper employ
the square lattice geometry in (1+1) dimensions, and fol-
low the solid-on-solid approximation. The SOS aspect
rules out the formation of overhangs and therefore the
KPZ equation becomes inapplicable, unless desorption is
allowed. We assume desorption to be negligible since it
is not a relevant process at the usual MBE growth tem-
peratures. We also mention that the scaling properties of
atomistic models are obscured by the fact that in these
models there are always typical length scales, other than
the system size, such as the interatomic distance, and
various diffusion lengths. This complicates the determi-
nation of the asymptotic growth exponents since their
calculation requires that the system sizes be much larger
than all the typical length scales of the model. In com-
puter simulations we are clearly limited in the system
sizes that we can study, and therefore we talk about ef-
fective exponents rather than the asymptotic exponents
associated with the models in the thermodynamic limit.

The plan of the rest of this paper is as follows: In Sec. IT
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we introduce and study the stochastic Monte Carlo 1D
MBE model (model 1) with Arrhenius activated diffu-
sion. In Sec. III we motivate, define, and study the gen-
eralized KD model, or model 2, which is a kinetic growth
model inspired by the 1D MBE model. In Sec. IV we
give some surface morphologies for the two models in the
saturation regime, discuss some aspects of finite-size and
crossover effects in our simulations, and provide a dis-
cussion of our findings for the critical exponents, mak-
ing a connection between our two models and the ap-
propriate continuum equations. In Sec. V we speculate
about another important issue, i.e., the role of possible
nonlinearities in the growth equation corresponding to
the KD model. The Appendix contains a discussion of
the applicable continuum equation describing the coarse-
grained asymptotic properties of stochastically driven in-
terface growth. (We refer to the Appendix appropriately
throughout the text of this article.)

II. MODEL 1:
A STOCHASTIC ARRHENIUS MODEL

A. Notation and definition

In this section we will discuss dynamic scaling in the
1D MBE model based on an Arrhenius activated sur-
face diffusion. The two-dimensional substrate version of
this model has been widely studied in recent years [17]
and it is the accepted model for stochastic MBE simu-
lation since it reproduces well the growth characteristics
observed experimentally. As a first step in the study of
the dynamic scaling properties of MBE growth, which in
practice takes place in three dimensions, in this paper
we will limit ourselves to two-dimensional growth. The
height of the deposit at the ith substrate site is denoted
by h; and the width of the one-dimensional growing in-
terface is defined as the root mean square of the height,
ie.,

1 L B 1/2
W(L,t) = [Z Z(h,. - h)z} ) (4)

To obtain good statistics, the width squared (W?) is av-
eraged over many runs, usually around 1000 and 100, for
small and large systems.

There are three kinetic processes in our model 1: ran-
dom deposition of atoms onto the deposit (we take the de-
position rate to be Ry = 1, that is, one atom per site per
second, or one monolayer per second), and two kinds of
hopping, or diffusion, where one and two bonds are bro-
ken via thermally activated diffusion, respectively. After
breaking its bonds, the atom hops to one of its neighbor-
ing columns, provided that the initial site is as high as or
higher than the final one. We are using a solid-on-solid
approximation and therefore we do not allow vacancies
and overhangs. The relevance of this approximation will
be discussed later in the context of the analysis of the
surface morphologies produced by our simulation. The
diffusion rates follow an Arrhenius behavior characterized
by a configuration-dependent activation energy given by
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R, = Ry exp[—E4(n)/kpT]. (5)

Here Ry = 2kpT/h is a diffusion prefactor which de-
pends weakly on the temperature 7, and kp and h
are the Boltzmann and Planck constants, respectively.
Es(n) = Eg + nEp is the site-dependent activation en-
ergy, where Fy is the activation energy of a free atom,
Ep is the binding energy per bond, and n is the num-
ber of nearest neighbors that the atom has in its initial
site. In our case an atom can hop only when n is 1 or
2, n = 1 corresponding to the situation where the atom
has initially only a neighbor underneath, and n = 2 im-
plies a nearest-neighbor underneath and another on the
side. Thus R; and R correspond respectively to one
bond- and two bond-breaking hopping rates. The val-
ues of the activation energies, Ep = 1 eV, and Eg = 0.3
eV are chosen with Si and GaAs in mind, but they are
only semiquantitatively correct. (Note that the activa-
tion barrier for the “vertical” and the “lateral” bonds
are 1.3 and 0.3 eV, respectively.)

We note that at low temperatures, R; < Ry (note
that Ry < R; always), and therefore we expect strong
crossover effects arising from random deposition. On
the other hand, when R; > Ry, the diffusion length
is long and finite-size effects dominate. It is only when
R; ~ Ry that we expect to see a nontrivial growth uni-
versality. It is important to notice that the diffusion rates
depend exponentially on the temperature and therefore
vary greatly as we span a temperature range of a few hun-
dred degrees. The dependence on the number of bonds
or the coordination number is also exponential, and this
produces a large difference in the respective rates R,
and Rs of one-bond and two-bond breaking events. To
illustrate this point, we give here a few values of the
diffusion rates: at the temperatures 400, 500, 600, and
700 K, R; (R;) takes the values 6.7 x 10™% (1. x 1077),
1.58 (0.001), 288.8 (0.87), and 12233 (84.4), respectively.
Since R; > R», the atoms tend to spend most of the
time in kink sites, especially at high temperatures. This
observation, in fact, motivated us to construct our KD
kinetic growth model (discussed in Sec. III), where the
deposited atoms instantaneously relax to the local kink
sites (and stay there forever) as the nonequilibrium ver-
sion of the 1D MBE model. We also note that three-
bonded (n = 3) sites are essentially stable in our simu-
lation and are always at the local height minima. Thus
diffusion to the three-bonded sites is qualitatively similar
to the relaxation to the local height minima in the RDR
kinetic growth model.

B. Calculating exponents o and 3

We calculate the critical exponents a and 3 from the
dependence of the interface width W on the growth time
t and the system size L, as given in Eqgs. (2) and (3). In
Fig. 2 we show log-log plots of W versus ¢t in model 1, for
T = 500 and 600 K, and for various system sizes. Here
we can see the different regions predicted by the scaling
hypothesis: for very early times (before the first layer is
completed), there is a power-law dependence correspond-
ing to random deposition (8 = 1/2); for intermediate
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FIG. 2. The calculated interface width W as a function

of growth time ¢t in model 1: (a) T' = 500 K, from bottom to
top: L = 8,16,32,64,128,256,1024 (for the smaller system
sizes we averaged over 500 runs and for L = 1024 over 32
runs); (b) T = 600 K, L = 32,64,128,16 384 (averaged over
300, 128, 128, and 50 runs, respectively).

times, the scaling law W ~ tP is obeyed, with 3 having
the characteristic value of our particular model; finally,
at long times, saturation is reached, and the width stops
increasing. In Fig. 2(a), where T' = 500 K, only for small
system sizes up to L = 64 can we see the saturation effect
within the time scale of our simulation (65 536 layers). At
T = 600 K [Fig. 2(b)], the onset of saturation for L = 32
occurs almost four decades earlier than at 500 K, and we
can see the saturation regime for much larger values of L
within a given growth duration. This is due to the much
faster diffusion at 600 K (compared with 500 K) arising
from activated hopping.

Note that for the small system sizes at 7' = 600
K [Fig. 2(b)], the time window where the scaling law
W ~ t# holds practically disappears because of the early
saturation produced by the relatively large (compared to
the system size) diffusion length. This is an extreme sit-
uation showing that the exponents calculated in a finite-
size simulation are not the asymptotic ones correspond-
ing to the thermodynamic limit L — oo. Therefore,
throughout this paper we will be reporting on our calcu-
lated values of the effective exponents, which are usually
close to the asymptotic values only if the characteristic
lengths of the model (diffusion lengths) are small com-
pared with the system size. In Fig. 3 we see that as
the t° time window shrinks, the effective exponent Beg
becomes lower than the asymptotic L — oo value due
to strong finite size effects. Figure 3(a) shows the cal-
culated effective exponent B.g in model 1 as a function
of the temperature. We give results for L = 256,512,
and 1024, obtained from curves of log,, W versus log,, t,
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FIG. 3. The calculated effective exponent Beg in model

1, as a function of (a) the temperature T and (b) the ratio
R, /Rg (the temperature T defines the hopping rate R; via
an Arrhenius rule; we have Ry =~ R4 for T ~ 500 K for
the parameters used). The different symbols correspond to
different system sizes: crosses, L = 256; triangles, L = 512;
and squares, L = 1024. (Data averaged over 128 runs except
for T = 600 K where 256 runs have been used.) The dotted
line corresponds to 8 = 0.375.

with growth duration of 1000 layers, and typically aver-
aged over 128 independent runs. In Fig. 3(b) we present
the same results but as a function of R;/Rg4, the ratio of
the fastest diffusion rate and the deposition rate, given
in number of atoms deposited per site per second.

In the limit T — 0 (or R;/R4 — 0), we are, clearly,
in the random deposition case, and the height of the de-
posit follows a Poisson distribution, with 8 = 1/2 (since
in this case there are no correlations between the differ-
ent columns, there is no saturation, and the roughness
increases without limit even in a finite system. Thus we
can say that a = 00).

At low temperatures (small R1/Rq ), we see that Seg
is very close to the random deposition value 8 = 1/2,
which we interpret as a finite-time effect, because the
relatively weak diffusion mechanisms cannot give rise to
correlations among the different columns in the limited
time of the simulated growth.

As we increase the temperature, (. decreases and
shows a plateau at a value close to 0.375 [dotted line
in Figs. 3(a) and 3(b)], around T = 500 K (R;/Rq = 1).
This plateau at 0.375 is the first piece of evidence that
leads us to believe that, at intermediate temperatures,
1D MBE belongs to a universality class different from
those represented by the EW and the KPZ models, i.e.,
the KD model, which was introduced in Refs. [5, 6]. The
existence of this new universality class and the fact that
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model 1 belongs to it (at least) in a limited temperature
range will become clearer in the next section, where we
study the KD model in which the atoms are allowed to
relax to kink sites and stay there forever. Therefore, in
Figs. 3(a) and 3(b) we see a crossover between RD and
a new universality class (KD) with 8 = 3/8.

At higher temperatures (Ri/Rgq > 1), Bes keeps
decreasing and eventually tends to zero in the high-
temperature limit. There are two distinct reasons for
Best to decrease from the asymptotic KD value with in-
creasing temperature. Since high temperatures produce
long diffusion lengths, this decrease in B.g is in part a
pure finite-size effect. (Note that at T > 600 K, B for
L = 256 is smaller than for the other two larger system
sizes.) On the other hand, at high temperatures, the
rate Ry becomes important, and the possibility of break-
ing two bonds gives the atoms some chance to minimize
their local heights rather than simply maximizing the co-
ordination number. This new mechanism that allows the
atoms to migrate to nearby local height minima by break-
ing two bonds should produce a crossover from the KD
to the RDR universality as the rate Ry increases with
increasing T'. Since there is no evidence of a plateau at
B = 0.25 in the curve of B.g versus temperature of Fig. 3,
we support this conjecture by presenting, in Sec. III, re-
sults for a generalized version of the KD model, where
the arriving atoms first look for a kink site and after-
wards they are allowed to break the bonds and move
further, with a certain probability. We will see that this
model crosses over from the KD to the RDR universal-
ity, which leads us to believe that in the thermodynamic
limit (L — o0), at high temperatures, the model 1 would
also produce the EW exponents § =1/4 and a = 1/2.

Figures 4(a) and 4(b) show the dependence of the effec-
tive roughness exponent aeg on the temperature T and
the ratio Ry /Ry, respectively. The method used to deter-
mine the exponents a.q(T) is illustrated in Figs. 4(c) and
4(d). For a given temperature, we let the growth time
be long enough so that saturation is reached for systems
of sizes L =20, 25, and 30. Since we are assuming that
Wiat scales as W,y ~ L% we then obtain the expo-
nent aeq using a linear fitting of In(Wia) versus In(L)
[Fig. 4(d)]. Notice that the values of the effective expo-
nents aeg given in Figs. 4(a) and 4(b) have been obtained
using the same set of system sizes (L = 20,25, 30) for the
different temperatures, in the spirit of Fig. 3, where the
exponent Beg is given as a function of T' (and R;/Ry) for
three fized values of L. As it happened in that case, the
finite-size effects will be more important at high tempera-
tures, where the diffusion lengths are longer. Notice that
to obtain ae.g we need growth durations larger than the
saturation time 7, which is of the order of 7 ~ L/ =~ L*.
This time is extremely large for large systems, making it
very difficult to evaluate the “asymptotic” values of « [in
other growth models, z = a/f is usually smaller than 4,
which makes the calculation of a easier; for example, for
ballistic deposition, z = a/8 = 1.5 in (1+1) dimensions].

As we pointed out above, as T' — 0, model 1 ap-
proaches the RD model, which does not undergo satura-
tion of the interface width at long times, since the differ-
ent columns of the aggregate are uncorrelated. The deter-
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FIG. 4. (a) The calculated effective exponent cg as a

function of the temperature T' in model 1; (b) aeg as a func-
tion of the ratio R;/Rg; (c) interface width W as a function
of time t. The saturation regime data from these curves were
used to obtain aes. From top to bottom, groups of three
curves correspond to the system sizes L = 30,25,20 for the
temperatures T = 500,520,...,640 K (data averaged over
500 runs for temperatures lower than 600 K and over 1000
for T > 600 K). (d) Logarithm of the saturation width as a
function of the logarithm of the system size. For each tem-
perature, three points and their least-squares fit are given,
obtained from the curves shown in (c). The slopes of the fits
are the effective exponents aes.

mination of the exponent « in our model at low temper-
atures therefore becomes practically impossible because
the onset of saturation occurs at very long growth times.
This is the reason why the lowest temperature consid-
ered in Fig. 4(a) is 500 K, where it was necessary to
grow 10% atomic monolayers to see the saturation regime
clearly. At T = 500 K we have a.g =~ 1.45, and for
higher temperatures the finite-size effects combined with
the crossover to RDR cause the effective exponent a.g
to decrease, down to a.g =~ 0.77 for T = 600 K. No-
tice that in the range of temperatures where the hopping
rate Ry = 1 (around T = 500 K), where we expect the
finite-time and finite-size effects to be weakest, we ob-
tain Beg =~ 0.375 [Fig. 3(a)] and a.g =~ 1.45 [Fig. 4(a)],
in agreement with the exponents corresponding to the
linear fourth-order Eq. (A7).

C. Scaling

According to the dynamic scaling hypothesis of Eq. (1),
for each growth model there exists a unique function f
such that

f/L7) = W(L,t)/L%, (6)

satisfying f(oo) = const, and f(z) ~ z? for small z,
where z = a/B. In Fig. 5(a) we plot W(L,t)/L* as
a function of ¢/L** and see the scaling collapse of data
for the model 1 for different system sizes, for ' = 500
K. In Fig. 5(b) we show results for T = 600 K. Notice
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FIG. 5. Scaling function f(t/L*e/Pett) = W/L* as ob-
tained from the simulation in model 1. The figure shows the
collapse of the data into the scaling function form for different
system sizes: (a) T = 500 K, L = 10 (circles), 25 (pluses), 30
(triangles), 64 (squares), and 128 (crosses); (b) T' = 600 K,
L = 20 (circles), 25 (pluses), 30 (triangles), 64 (squares), and
128 (crosses).
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that the effective exponents by which we rescale the time
and the width are different for different temperatures and
therefore the existence of a unique (for all values of T')
scaling function is not explicitly verified. This is consis-
tent with our expectation of a crossover from the KD to
the RDR universality and also with the fact that our ex-
ponents are affected by finite-size effects. Although the
growth exponents and the scaling function are affected by
crossover and finite-size effects, we verify that at a given
temperature the rescaled width-versus-time data always
collapse to a unique functional form. This collapse is in
part a trivial consequence of the way the effective expo-
nents have been calculated, but it does demonstrate that
the saturation time has the form 7 = AL?*, with A an L
independent constant.

D. Simulation without two-bond-breaking hops

We also studied a variation of the original model 1,
putting Ry = 0 explicitly, i.e., where two-bond-breaking
hops are forbidden, and therefore the only diffusion mech-
anism is one-bond-breaking nearest-neighbor hops. This
implies that atoms in kink sites will remain there forever.
With this modification the model becomes equivalent to
the kinetic KD model and a high-temperature crossover
to EW universality is not expected anymore. In Fig. 6(a)
we show the effective exponent B.g as a function of the
substrate temperature 7. Again we see the crossover
from the RD to the KD universality at low temperatures,
but the important difference with the Rz # 0 case is that
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FIG. 6. Simulation results for model 1 with the two-bond-
breaking hopping rate Rz = 0. (a) Effective exponent Beg as
a function of the temperature; (b) the width W as a func-
tion of time ¢, used to calculate Beg given in (a). The system
size used is L = 1000, and curves from top to bottom corre-
spond to increasing temperature. The effective exponents are
calculated from the slope of the curves in the highest decade.
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the plateau at 8 = 0.375 is more pronounced due to the
fact that there is no crossover to the RDR-EW univer-
sality (8 = 0.25) in the current situation. Notice that at
high temperatures B.g decreases somewhat as expected
due to the finite size of the system, but this decrease is
not nearly as strong as in the case of the original simu-
lation (Fig. 3). We conclude that the strong finite-size
effect observed in Fig. 3 responsible for B.g going rapidly
to zero comes mostly from the diffusion associated with
the breaking of two bonds. In Fig. 6(b) we show the
width W as a function of time ¢, used to calculate (B.g
versus T given in Fig. 6(a). Each curve corresponds to a
different temperature, and B.g is obtained from the last
decade of each curve.

III. MODEL 2: A KINETIC GROWTH MODEL

A. Notation and definition

The simulation results discussed in the preceding sec-
tion suggest that the realistic (in the sense that the diffu-
sion rates follow an Arrhenius activation behavior) model
1 crosses over from random deposition (at 7= 0 K) to a
new universality class (at intermediate T' ~ 500 K), and
then (we conjectured, but strong finite-size effects pre-
vent us from obtaining the corresponding values for the
growth exponents) possibly to the EW universality class
(as the two-bond-breaking hopping rate R; becomes im-
portant at higher temperatures). In finite-size systems,
increasing the temperature further leads to a completely
smooth surface, and therefore the growth exponents tend
to zero as T — oco. This “smooth” growth is just a result
of the effective diffusion length becoming larger than the
simulation system size.

Therefore, the study of the scaling exponents for model
1 brings up the following questions.

(1) Is there really a new universality class with g = 3/8
and o ~ 1.47

(i) Which mechanism of model 1 is relevant in pro-
ducing these new exponents?

(iii) Does model 1 cross over to RDR with EW univer-
sality when R, becomes large?

To answer these questions we introduce a simplified ki-
netic growth model, which we call model 2, that preserves
many aspects of model 1 but gives us more freedom to
control the diffusion mechanisms and thereby study their
effects on the scaling exponents. Our model 2 is a gener-
alization of the model defined in Ref. [6], which we call
kink diffusion model. The KD model constitutes a pos-
sible description of MBE at intermediate temperatures,
where diffusion to kink sites is the most important sur-
face relaxation mechanism. It was pointed out in Refs. [6,
5] that, according to the simulations, the KD model be-
longs to a universality class different from RD-EW and
BD-KPZ. In this section we present more complete nu-
merical evidence for this and generalize the KD model to
include the possibility for the atoms to break two bonds
and leave the kink sites. This process changes the uni-
versality class from KD to RDR, as we will see below.
Model 2 preserves the square lattice geometry and the



48 SURFACE-DIFFUSION-DRIVEN KINETIC GROWTH ON ONE-. .. 2583

solid-on-solid aspect of model 1, but, being a kinetic
growth model, the diffusion rates are eliminated by let-
ting the atoms diffuse only once when they are being
incorporated to the deposit. The incorporation of new
atoms is done in the following steps [see Fig. 1(d)].

Step 1: The atom lands initially on a randomly chosen
column.

Step 2: The atom relaxes instantaneously to the near-
est kink site (a site with 2 or 3 nearest neighboring atoms)
with probability p;, provided that the kink is within a
distance £ (0 < £ < L, where L is the lateral system
size) of the initial deposition site, and that it does not
have to jump upwards to reach the kink.

Step 3: If the atom finds a site with two nearest neigh-
bors, there is a probability p, that it will break the two
bonds and hop to the next column (again, the atom is
not allowed to move up).

Model 2 differs crucially from model 1 in the fact that
the atoms are allowed to relax only once (when they are
being deposited) and not continuously, and therefore we
are left with only one rate in the problem, namely the
deposition rate. However, we incorporate in model 2 dif-
fusion mechanisms which are analogous to the ones op-
erating in model 1. Step 2 corresponds to the hopping
involving breaking one bond, which makes the atom hop
around until it finds a kink site. The rate R; of the old
model corresponds now to the parameters p; and £. Step
3 is related to the two-bond-breaking hops of the former
model, the probability p, playing a role similar to the
hopping rate R,.

B. Simulations with p, = 0

If we let p; = 0 (no two-bond-breaking hops) model
2 reduces to the KD model introduced in Ref. [6]. First
we present more complete numerical results for this case,
including our calculations of the roughness exponents «,
which we mentioned only briefly in Ref. [6].

In Figs. 7(a) and 7(b) we show some log-log plots of W
as a function of growth time ¢ in model 2, with p; = 0,
for various values of £ and L. We verify in these plots
that model 2 satisfies the scaling hypothesis W ~ t#, for
intermediate times, and that the correlations between dif-
ferent columns introduced by the migration of new atoms
to kink sites result in saturation of the width W at long
times. The curves for the small system sizes show the
saturation regime from which « is calculated, and the
curve for L = 1000 follows over a wide time interval the
power law W ~ t8, used to calculate 3.

In Fig. 8(a) we show our calculated values of B¢ as a
function of p; for model 2, with p, = 0, for various values
of the diffusion length £. We can see that the finite-size
effects are much less important here than in model 1, and
it seems clear that 8 =~ 0.375, independent of p;, which
implies that our second growth model (when p, = 0)
belongs to a universality class other than EW and KPZ
universality classes. Only for small values of p; does Beg
depart from the value 0.375 and approach 0.5, but this is
clearly due to the crossover to RD as p; — 0. In Fig. 8(b)
we show a log-log plot of W as a function of growth time
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FIG. 7. The calculated width W as a function of the
growth time ¢ in model 2 for py = 1, p» = 0, L =

30,40, 50,1000 (averaged over 1000 runs for L = 30,40,50
and over 100 runs for L = 1000), and (a) £ = 1, (b) £ = 3.
The dotted line corresponds to 3 = 0.375.
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FIG. 8. Simulation results for model 2 with p» = 0. (a)
The calculated effective exponent Beg as a function of the dif-
fusion probability p1. The different symbols indicate different
diffusion lengths: pluses, triangles, and squares correspond to
£ =1, 2, and 3 respectively. (b) The calculated width W as a
function of growth time ¢, for various values of p; (from top
to bottom p; = 0.01,0.04,0.1,0.2,0.4,0.6,0.8,1) and £ = 1.
The system size is L = 1000 and results are averaged over 100
runs. The dotted line corresponds to 3 = 0.5 and the dashed
line to B8 = 0.375. These are the curves of W vs t from which
the effective exponents Beg for £ = 1 shown in (a) are calcu-
lated. The effective exponents are the slope of the curves in

the highest decade.




2584

t for L = 1000, £ = 1, and various values of p;. For p;
=0.01 we observe that the finite-time effect produces a
high slope, close to 8 = 0.5, corresponding to RD. As
we increase pp, the slopes of the curves decrease rapidly,
leading to 8 = 0.375, the characteristic value of 3 for this
model, as shown in Fig. 8(a).

It is interesting to determine how the effective expo-
nent B.g that we obtain with our necessarily finite-size
simulation depends on the diffusion length given by the
parameter £. In Fig. 9(a) we plot Beg as a function of
£, for p, = 0 and p; = 1. As the diffusion length in-
creases the effective exponent decreases somewhat due
to finite-size effects. However, it seems clear that 3 will
not depend on £ in the thermodynamic limit (L — oo)
or, in other words, 8 = 3/8, for our model, independent
of £. In Fig. 9(b) we show the curves of the width W as
a function of time ¢ employed to calculate Beg. Since Beg
is least affected by finite-size effects when £ = 1 and by
finite-time effects when p; = 1, we made additional sim-
ulations for £ = 1 and p; = 1 and system sizes L = 10°
and 10° to determine our best estimate of the asymp-
totic exponent 3 for model 2 with p, = 0. The result is
Best = 0.371 + 0.005.

The effective exponent a.g as a function of the diffu-
sion length £ in model 2, for p, = 0, is shown in Fig. 10(a).
In Fig. 10(b) we show the interface width W as a func-
tion of time t for some values of the diffusion length £.
Figure 10(c) is a plot of In(W) versus In(L) for £ from 1
to 9. For comnsistency, we calculated a.g using the satura-
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FIG. 9. (a) The calculated effective exponent Beg as a

function of the diffusion length £ in model 2, for p; = 1 and
p2 = 0. The dotted line corresponds to 8 = 0.375. (b) The
calculated width W as a function of growth time ¢, for var-
ious values of £ (curves from top to bottom correspond to
increasing £), used to calculate Beg given in (a). The system
size L = 10000 and the number of runs is 100. The effective
exponents are the slope of the curves in the highest decade.
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tion widths for the same set of system sizes for all values
of £ (i.e., L = 30,40,50). From Fig. 10(a) we see that for
small ¢, a.g is around 1.3 and decreases as £ increases.
Analogously to what happened in model 1, for large dif-
fusion lengths, the finite-size effects decrease our effective
exponent aeg [notice that the saturation widths W used
to calculate a.g in Fig. 10(c) for large £ are very small
and therefore the calculated effective exponent a.g will
be far from the asymptotic value]. Using system sizes
larger than the ones used in Fig. 10, namely, L = 40, 80,
and 160 (the W versus t curves for these runs are shown
in Fig. 11), our best estimate of the asymptotic value of
a turns out to be a = 1.32 4 0.04.
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FIG. 10. (a) The calculated effective exponent c.g as a

function of the diffusion length £ in model 2, for p; = 1 and
p2 = 0. (b) Interface width W as a function of time t. The
saturation regime data from curves like these were used to
obtain aeg. From top to bottom, groups of three curves cor-
respond to the system sizes L = 50,40,30 for the diffusion
lengths £ = 1, 3, 5, and 9. Results are averaged over 1000
runs. (c) Logarithm of the saturation width Wi vs loga-
rithm of the system size L, for different diffusion lengths £.
The straight lines are linear fits to the calculated saturation
widths, and their slopes are the effective exponents aeg. From
top to bottom, the curves correspond to £ from 1 to 9.
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FIG. 11. Interface width W as a function of time t in

model 2 for £ = 1, p; = 1, and p2 = 0. These simulation re-
sults were used to obtain our best estimate of the asymptotic
exponent a. From bottom to top, the curves correspond to
the system sizes L = 40, 80, and 160. Results are averaged
over 60, 100, and 100 runs, respectively. The straight lines on
the saturated width regions give the average values of Wi,y
for each system size.

C. Simulation with p; # 0

We now show results for model 2 when the probability
p2 of breaking two bonds is nonzero. The motivation of
this analysis is to provide evidence that the model 1 will
crossover to EW-RDR at high temperatures, because in
that regime the rate of hops involving breaking of two
bonds becomes important, and therefore the atoms will
have a chance to leave the kink sites and jump down,
minimizing their height.

In Fig. 12 we show some curves of the width W as a
function of the time ¢, in model 2, for p; = 1, p, = 1,
and £ = 1. We see the saturation regime for small L;
the slope close to 0.25 for L = 10000 indicates that this
model is in the universality class of RDR.

In Fig. 13(a) we show SB.g as a function of p; and in
Fig. 13(b) the curves of W versus t used to calculate Seg.
We clearly see the crossover from the KD universality
class with 8 = 0.375 to the RDR universality class with
B = 0.25. In Fig. 14(a) we show the effective exponents
aer as a function of the probability py, for £ = 1 and
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FIG. 12. The calculated width W as a function of growth

time ¢ in model 2, for p; =1, p2 = 1, and £ = 1. The different
curves correspond to different system sizes: from bottom to
top L = 30,40,50, and 10000. Results are averaged over
1000 runs for L = 30,40,50, and 100 runs for L = 10000.
The dotted line corresponds to g = 0.25.
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FIG. 13. (a) The calculated effective exponent Beg as a

function of the probability p2 in model 2. The diffusion prob-
ability p; = 1 and the diffusion length £ = 1. The dotted line
corresponds to 8 = 0.375 and the dashed line to 8 = 0.25.
(b) The calculated width W as a function of growth time ¢
in the new model for various values of the probability p2 of
breaking two bonds, used to calculate B.g given in (a). The
system size L = 10000 and the number of runs is 100. The
effective exponents are the slope of the curves in the highest
decade. The dotted line corresponds to 8 = 0.375 and the
dashed line to 8 = 0.25.

p1 = 1. Again, the crossover from ~ 1.3 (KD) to 0.5
(RDR) is evident from this figure. In Fig. 14(b) we show
the interface width W as a function of time ¢ for some
values of the probability p,. In Fig. 14(c) we show the
In(Wias) versus In(L) curves whose slopes give aeg for
the different values of p,.

We believe that, given the similarity of the diffusion
mechanisms defined in each of our models, the data
just shown suggest that a similar crossover (from KD
to RDR) may occur in model 1 when the temperature
becomes large. The fact that we did not observe this
crossover in Sec. IT is due, we think, to finite-size effects,
which completely mask the RDR scaling at high tem-
peratures. Thus high-temperature MBE (without any
overhangs and vacancies) may actually belong to EW
universality with the intermediate-temperature behavior
dominated by KD universality.

D. Scaling

In Fig. 15 we show the calculated scaling function
for model 2, W(L,t)/L* as a function of ¢t/L*%, as
discussed in Sec. IIC in the context of model 1. In
Figs. 15(a) and 15(b) we give results for the case p; = 0,
i.e., the KD model without two-bond-breaking hops. No-
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tice that we rescale time and width using effective expo-
nents rather than asymptotic ones. Figure 15(c) corre-
sponds to p, = 1, where model 2 has crossed over to
the RDR-EW universality class, as can be seen from the
values of the exponents used to rescale time and width.
Basically the considerations made about the scaling func-
tion for model 1 apply in this case as well.

IV. DISCUSSION
A. Morphologies

In Figs. 16(a)-16(h) we show the surface morphologies
produced by model 1 at different temperatures. All of
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FIG. 14. (a) The effective exponent a.g as a function of
the probability pz in model 2. The diffusion probability p; =
1 and the diffusion length £ = 1. (b) Interface width W
as a function of time t. The saturation regime data from
curves like these was used to obtain a.g. From top to bottom,
groups of three curves correspond to the system sizes I =
50,40,30, for the probabilities p2 = 0, 0.1, and 1. Results
are averaged over 1000 runs. (c) Logarithm of the saturation
width Wi.: vs logarithm of the system size L, for different
values of the probability p,. The straight lines are linear
fits to the calculated saturation widths and their slopes are
the effective exponents aeg. From top to bottom, the curves
correspond to p; = 0,0.04,0.1,0.2,0.4,0.6,0.8, 1.
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these surface morphologies are in the steady-state satu-
ration regime, where the interface width becomes time in-
dependent. The roughness of these morphologies is then
the maximum possible roughness that can be achieved at
each temperature. Notice that since the onset of satura-
tion depends on the temperature, the average height of
the deposits (taken as the origin of coordinates) is not the
same for the different temperatures. The most striking
feature of the morphology at low temperatures is the for-
mation of deep and narrow valleys, which are smoothed
out at higher temperatures. This jagged and extremely
rough morphology is a consequence of the large value of
aeg in the 1D MBE model.

In Figs. 17(a)-17(e) we see that the same kind of struc-
tures appear in model 2 for ps = 0, and therefore we
conclude that the formation of deep valleys surrounded
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FIG. 15. Scaling function f(t/Lof/Pef) = W/L%# as

obtained from the simulation in model 2. The figure shows the
collapse of the data into the scaling function form for different
system sizes: (a) £ =1, p1 = 1, p2 = 0, L = 10 (circles), 30
(pluses), 40 (triangles), 50 (squares), and 64 (crosses); (b)
£ =5 p1 =1, po = 0, L = 30 (circles), 40 (pluses), 50
(triangles), 100 (squares), and 200 (crosses); (c) £ =1, p; = 1,
p2 = 1, L = 30 (circles), 40 (pluses), 50 (triangles).
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by high steps is due to the migration of surface atoms to
nearby kink sites. We verify that longer diffusion lengths
£ produce locally smoother surfaces and smaller typical
step heights, corresponding to high temperatures in the
first model. This local smoothness at length scales com-
parable to the system size causes the effective exponents
to approach zero or, in other words, the asymptotic scal-
ing exponents can only be calculated using system sizes
much larger than the typical length scales of the sur-
face fluctuations. In Figs. 17(f) and 17(g) we show sur-
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face morphologies produced with p, = 1, which corre-
sponds, as discussed above, to the RDR model. Compar-
ing Figs. 17(a) and 17(f), which differ only in the value
of p (0 and 1), we clearly see that the high steps char-
acteristic of the KD model disappear when two-bond-
cutting processes are allowed. Since the presence of high
steps naturally leads to overhangs and bulk vacancies,
the activation of two-bond-cutting diffusion at high tem-
peratures in MBE growth is important to avoid those
defects.
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Surface morphologies in model 1 in the saturation regime for (a) T = 500 K, (b) T = 520 K, (c) T = 540 K, (d)

T =560K, (e) T =580 K, (f) T'=600 K, (g) T =620 K, and (h) T = 640 K. We plot the height h of the deposit as a function
of the substrate site z, with the origin of the h axis shifted by the average height to show only the surface. Notice that the
range of the h axis is larger for T' = 500 and 520 K than for the other temperatures.
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Is the SOS model a realistic approximation to the real
MBE growth, or must overhangs and vacancies be consid-
ered in the simulations? Overhangs are important only
when high steps tend to develop as, for example, happens
in model 1 at low temperature; in this case, allowing over-
hangs is a realistic choice which would lead to vacancies
in the bulk and smoother surfaces. In fact, this is just
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the ballistic deposition model which belongs to the KPZ
universality class (8 = 1/3, a = 1/2). At T = 600 K
the high steps have been almost completely eliminated
and, at higher temperatures, steps higher than one lat-
tice spacing are unlikely. Thus, in the high-temperature
limit, allowing overhangs should not affect the surface
morphology substantially and, moreover, we expect that
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Surface morphologies in model 2 in the saturation regime for p; =1 and (a) p2 =0, £ =1, (b) p2 =0, £ = 3, (c)

p2=0,£=5,(d)p2=0,£=7,(e) p2=0,£=9, (f) p2 =1,£=1, and (g) p2 = 1, £ = 5. We plot the height h of the deposit
as a function of the substrate site x, with the origin of the h axis shifted by the average height to show only the surface.
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EW (not KPZ) will still be the universality class of the
model, except for unphysically large system sizes where
the asymptotic KPZ critical behavior may show up.

B. Finite-size effects

The scaling relations Egs. (2) and (3) are valid in the
limit of large times and system sizes. (In fact, the basis
for the dynamic scaling hypothesis is that L and t are
the only relevant length and time scales in the problem.)
In this limit, the scaling exponents 3 and « are universal
in the sense that they are independent of the parameters
of the models. For finite systems and times, we handled
the corrections to scaling by introducing effective expo-
nents Beg and aeg such that W ~ tPrf and W,y ~ Lo,
which are no longer universal. The relevant parameters
on which the effective exponents depend are the tem-
perature T' (which determines the hopping rates R; and
R,), the deposition rate R4, and the system size L. How-
ever, it may be more useful to express that dependence
in terms of L and some diffusion length, suitably defined
in terms of T and R,.

A number of definitions of a surface diffusion length £
have been introduced, and its dependence on the deposi-
tion time 7 = 1/R4 and the diffusion constant v; [follow-
ing the notation of Eq. (A7)] has been estimated to be of
the form £Y ~ v;y7. For the exponent -y, de Miguel et al.
[18], Irisawa et al. [19], and Das Sarma, Lai, and Tam-
borenea [20] proposed that v = d + 1, and Stoyanov [21]
and Villain [22], suggested v = d + 3. Recently, Ghaisas
and Das Sarma have considered this question in details
[23]. Although we consider that it may be simplistic to
describe real MBE growth using a single diffusion length
parameter £, here we present a finite-size analysis using
a diffusion length as the relevant parameter.

According to the analytical treatment of the Eq. (A7)
by Das Sarma, Lai, and Tamborenea [20], the interface
width W, and hence the effective exponent B¢, depends
on the parameter v;7/L*. Using the estimate £7 ~ vy,
the dependence of Beg on £ and L becomes of the form
Bett = Bes(LY/L*). If we now refer to the KD model
(our model 2 with p, = 0), whose asymptotic exponents
are close to those of the linear gradient fourth equation
[Eq. (A7)], we can identify the physical diffusion length £
with the parameter £ of the model and use the simulation
results to see whether v = 3 or 5 (for d = 2) gives the
best data collapse to a unique B.g(LY/L*) expression.
In Figs. 18(a) and 18(b) we plot Bes as a function of
£Y/L*, for v = 3 and 5, respectively, for various values
of the diffusion length £. For comparison, we also give
Bes as a function of £*/L* in Fig. 18(c). Clearly, a larger
value of v rescales the data in the right direction and
therefore we conclude that our results are more consistent
with v = 5 than with v+ = 3. This finite-size analysis
should be taken with caution since the data collapse that
it produces is not completely satisfactory and it relies on
many assumptions that may turn out to be too simplistic.
In particular, the assumption of a single £ which has a
unique power-law dependence on the deposition rate 77!
is surely far too simplistic [23].
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C. Sharp epitaxial temperature

To reconcile the experimental finding of a sharp epi-
taxial temperature [24] with the kinetic roughening con-
cept, we argue that this discrepancy can be understood
in terms of finite-size effects and the exponential depen-
dence of the diffusion rates on the temperature. The
fact that the surface roughness saturates to a time-
independent value after a certain growth time (of the
order of Lo#/Ber) can be used to give an operational
definition of smooth growth and hence to determine the
parameters T, R4, and L such that smooth growth is
achieved. For a given system size, the saturation width
Wiat(T') is a decreasing function of the temperature, as
shown in Fig. 19, for model 1. As a possible defini-
tion of smooth growth (in fact, a rather stringent one),
we can demand the saturated width to be smaller than
unity (these means that at all times the surface fluc-
tuations will be smaller than one monolayer). We can
then introduce an epitaxial temperature T, (L) separat-
ing our just defined rough and smooth regimes, such
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FIG. 18. The effective exponent Beg in model 2, as a func-
tion of £7/L*, for different values of £ and v: (a) v = 3, (b)
v = 5, and (c) v = 4. Pluses, crosses, squares, and triangles
correspond to £ =1, 3, 5, and 10, respectively.
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FIG. 19. The saturated width Wsae [= W(L,t — o0)] as

a function of the substrate temperature T in model 1, with
L = 30.

that Weat(L,T) < 1 for T > T.(L). For example, in
Fig. 19, W (L = 30,T) becomes smaller than unity
around T, ~ 600 K. We apply this procedure for different
values of L and obtain the epitaxial temperature T, (L)
as a function of the system size L. The result is shown as
squares in Fig. 20. The important finding is that T, (L)
basically saturates to a constant value for large L, which
agrees with the experimentally well-known existence of a
sharp epitaxial temperature separating rough and smooth
growth. Note that the very weak dependence of T, on L
is a direct consequence of activated hopping diffusion.

A simple analytic argument based on the idea that
smooth growth will be achieved when the diffusion length

) 1/2
_ Z <2kBT e(Eo+nW)/kBT) (7)
- h

n=1

is comparable to the system size predicts a T.(L) given
as triangles in Fig. 20. We can see that both simulation
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FIG. 20. Epitaxial temperature T. as a function of the
system size L. Squares give the simulation results in model
1, obtained by looking for the temperature at which the sat-
uration width becomes smaller than unity for a given system
size, and triangles correspond to the values calculated with a
simple theory explained in the text.
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and a simple theory agree well with the experimental ev-
idence of a sharp transition temperature. According to
this idea, this relatively sharp transition is not a phase
transition, but a consequence of the finite-size effects cou-
pled with the exponential dependence of the diffusion
rates on the temperature. The consequence of this ex-
ponential dependence is that large changes in L produce
small (basically logarithmic) changes in T, and therefore
T. appears to be sharp, i.e., independent of L. We have
recently [25] used this idea to qualitatively explain recent
experimental findings of a critical epitaxial thickness in
MBE growth [26].

D. Connection with continuum theories

The main goal of this paper is to present exten-
sive atomistic simulation results for stochastically driven
crystal growth in (1+1) dimensions under atomistic beam
deposition process and to make connection with (one
dimensional) MBE growth within a SOS, square-lattice
model. But, throughout this article we have made appro-
priate references to various continuum growth equations
(Appendix) which seem to describe well various numer-
ically calculated growth exponents. In this subsection
we summarize our findings in relation to various contin-
uum models. An excellent discussion of this issue, from a
somewhat complementary perspective, has recently been
provided by Villain [27]. While our emphasis here is on
atomistic simulations, Villain’s theoretical approach is
based on a long-wavelength macroscopic viewpoint. Lai
and Das Sarma [15] have investigated this issue from
a geometric-topological viewpoint and have provided a
renormalization-group analysis of the nonlinear fourth-
order equation [Eqs. (A8) and (A9)]. Das Sarma and
Ghaisas [16] have recently investigated this issue in (2+1)
dimensions via kinetic growth simulations.

We summarize our findings for the critical exponents
in the two models (models 1 and 2).

Model 1

(1) At low temperatures, activated diffusion being neg-
ligible, we get B¢ = 1/2 which corresponds to the ran-
dom deposition case. Theoretically, this is obviously
a finite-time effect in the simulation; however, diffu-
sion being exponentially suppressed at low-temperatures,
we expect our low-temperature results to hold in real
growth situation, except that real growth will most likely
crossover to KPZ universality because overhangs and va-
cancies will be generated in this extremely rough situa-
tion.

(2) At intermediate temperatures, activated hopping
with the breaking of one bond becomes possible during
the time scale of simulation (and also, we believe, during
activated growth) and one gets crossover to the newly
discovered KD universality class (which corresponds to
atoms diffusing to kink sites) of our model 2 with p; = 0.

(3) At higher temperatures, crossover effects associ-
ated with the breaking of two bonds show up along with
strong finite-size effects lowering both B.g and aeg. The
effective exponents smoothly approach zero due to finite-



48 SURFACE-DIFFUSION-DRIVEN KINETIC GROWTH ON ONE-. ..

size effects associated with the diffusion length becoming
larger than the system size.

(4) We believe that the universality class at high tem-
peratures, where hopping diffusion with the breaking of
two bonds becomes activated (but the temperature is not
so high as to produce significant desorption), is the EW
(or the RDR) where the atoms relax to the local height
minima (as, for example, under a gravitational potential
in the original EW paper). In our model, gravitation, of
course, is totally negligible—but, in not allowing atoms
to hop up, we are intrinsically assuming an attractive
substrate (this is a physically well-valid assumption for
MBE growth) which acts similar to a gravitational poten-
tial. In this situation, cutting of two bonds (i.e., only the
lowest energy three-bond saturation is now stable) within
the SOS model (i.e., no vacancies, overhangs, etc.) will
clearly take atoms to local height minima mimicking EW
growth (note that this is no longer true once desorption
or bulk vacancy or overhang formation is allowed whence
the EW universality will cross over to the ubiquitous KPZ
universality, which probably does happen at still higher
temperatures in MBE growth). We mention that abso-
lutely unequivocal evidence for the higher-temperature
crossover to EW universality is not obvious in our 1D
MBE simulation because finite-size effects become impor-
tant around where two-bond cutting processes are quan-
titatively significant.

The above points become self-evident once the simu-
lation results of our model 2 are compared with those of
model 1 in light of items (1)—(4) above.

Model 2

(1) In model 2, the situation p; = p2 =~ 0 (or < 1)
corresponds to the low-temperature 1D MBE growth (es-
sentially no diffusion) of model 1. The growth process is
then trivially RD producing Beg = 1/2.

(2) Intermediate temperatures of model 1 correspond
to ps =~ 0, but p; finite in model 2 so that there is sig-
nificant diffusion to kink sites (but insignificant hopping
from kink sites), which produces the KD universality of
(according to our best estimates) 8 = 0.371 & 0.005 and
a = 1.32 + 0.04. This is, as noted before, intermediate
between RD and RDR growth. This regime presumably
corresponds to the linear fourth-order equation [Eq. (A7)]
as was already noted earlier.

(3) For £ =1 and p;1, p2 # 0 we get crossover effects in
model 2 with competition among KD, EW, and finite-size
effects. As p, (and £) increases (equivalent to increasing
temperature in model 1), finite-size effects produce sub-
stantial smoothing of the growing surface with the effec-
tive exponents approaching zero (similar to model 1).

(4) The high-temperature regime of model 1 corre-
sponds to large values of ps in model 2. The result of
increasing p, (keeping p; # 0) is, as we stated before,
a crossover from the KD to the RDR-EW universality
classes. Given the similarity between the diffusion mech-
anisms in both model, we conclude that model 1 would
also show this crossover at high temperatures for large
enough systems.
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V. SUMMARY AND CONCLUSION

In this paper, we have presented a detailed numerical
study of (141)-dimensional epitaxial growth within the
square lattice, SOS model in the chemical bonding envi-
ronment with an attractive substrate where the atomic
deposition is purely random and the only allowed relax-
ation is surface diffusion via Arrhenius activated hop-
ping. Bulk vacancy formation, overhangs, and desorp-
tion are not allowed, making the growth process con-
servative which rules out nonlinearities of the KPZ type
(Appendix). We find this one-dimensional MBE growth
model to satisfy the dynamic scaling hypothesis given by
Eq. (1) and be dominated by crossover effects, among
the RD, KD, and RDR universality classes—with RD
and KD dominating at low and intermediate tempera-
tures, respectively, and RDR-EW showing up weakly at
higher temperatures as two-bond breaking events become
operational. We also give detailed numerical results for
a kinetic growth model which is a generalized version of
the KD model introduced in Ref. [6]. Using system sizes
of L = 10% and L = 10% we find the exponent 3 in the
KD universality class to be 8 = 0.371 £ 0.005 and our
largest simulations give & = 1.324+0.04. When two-bond-
breaking hops are activated in this kinetic growth model
we observe a crossover from KD to RDR universality.

We point out that our 1D MBE growth results may
very well have some experimental relevance to situations
involving atomic migrations on a vicinal substrate with
steps. Our results, for example, apply directly to how the
morphology of these steps evolves with time as new atoms
migrate to the step edges. As such our 1D MBE simula-
tion results should describe step evolution in the so-called
step-flow MBE growth situation. If one can experimen-
tally extract the growth exponents associated with the
temporal roughening of the propagating steps (from, for
example, time-resolved scanning tunnel microscope pic-
tures taken during the step-flow MBE growth), one may
be able to make a direct comparison with our theoretical
predictions. Such an experimental evaluation of growth
exponents via a statistical analysis of time-resolved STM
pictures of steps has not yet been attempted, but should
be useful in determining kinetic universality classes of
growth with surface diffusion.

We note that any connection between our growth mod-
els and real MBE growth should be taken with caution,
not only because our growth studies are in (1+1) dimen-
sions but also because our models are based on certain
assumptions which are currently a source of controversy.
The main crititicism has to do with the asymmetry of the
diffusion mechanisms: in our two models, the diffusion of
atoms down a step or cliff is not limited by the height of
the step, whereas the hops in the horizontal direction are
nearest-neighbor hops in model 1, and are bounded by
the parameter £ in model 2. These rules break the sym-
metry between horizontal and vertical diffusion and may
lead to unphysically high steps in the surface morphology
and probably to values of the exponent « larger than one.
This is a valid criticism which has motivated recent work
on kinetic growth simulations treating horizontal and ver-
tical diffusion on an equal footing [28]. The result of this
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treatment is essentially a recovery of the KPZ universal-
ity, as might have been anticipated, since the limitation
on the velocity of vertical diffusion leads to overhangs
and vacancies, which are typical of the BD model. We
emphasize that theory, by itself, cannot settle the issue of
the correct universality class for MBE growth; we must
look at experiments for the answer. Very recent exper-
imental results [29] in (2+1) dimensions are consistent
with the LDS universality, and results for an equivalent
physical system in (141) dimensions could produce expo-
nents consistent with our KD universality, as discussed in
the next paragraph. While more experimental results are
clearly needed to settle this issue, our own viewpoint as
emphasized here and in other publications [1, 16, 20, 30]
is that real MBE growth will most likely be affected by
crossover effects from RD, KD, and then, possibly, RDR-
EW universalities as growth temperature (growth rate)
increases (decreases), with the true asymptotic univer-
sality, which will be masked by strong finite-size effects,
being the BD-KPZ universality. It may be appropriate
to point out here that stochastic Arrhenius MBE growth
simulations [17] have been quite successful in describing
real MBE growth in (2+1) dimensions. In particular,
“vertical” diffusion at very high steps is extremely rare
in the actual simulations and may not be as severe a
problem as it appears at first sight. Another aspect of
our models that has raised criticism is the usage of a sim-
ple cubic geometry, and this problem has been addressed
in Ref. [31].

Before we conclude, we briefly discuss why the simple
linear model of Eq. (A7) involving the V* term seems to
describe our intermediate temperature model 1 results
or the p, = 0 version of model 2 results so well (i.e.,
B = 0.375 = 3/8 as it should be in both cases). This issue
has been discussed recently by Lai and Das Sarma [15]
from a geometrical-topological viewpoint. Here we note
the curious fact that for our best simulations the asymp-
totic value of «a seems to be more consistent with a =~ 1.32
than with o = 1.5 as the linear theory demands, even
though the value of 3 seems to be 0.375 within our error
bar (8 = 0.37140.005 according to our best simulations).
There are three possibilities. One is that our calculated o
has fairly large numerical errors (and the asymptotic « is
indeed 1.5 as demanded by the linear theory) beyond our
estimated statistical error bars. This is certainly possible
since an accurate numerical determination of o from dy-
namical simulations is almost impossible. Another pos-
sibility is that the linear term vV2h is present in the
continuum equation with a small but nonzero value of
v. This linear term would dominate over the V% term
at long length scales, decreasing the exponent « from 1.5
to 0.5. Tt is clear, though, that our set of exponents (a,
B) are much closer to those of Eq. (A7) than to the EW
ones, which leads us to believe that the coefficient of a
possible V2 term, if this term is at all present in the un-
derlying continuum equation, is much smaller than the
coefficient of the V% term. The last possibility, which
we cannot rule out, is that in our longest and largest
simulations we are getting some nonlinear effects inher-
ent in the atomistic kinetic simulation. We mention that
the two mathematically and physically allowed nonlinear
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corrections to the V* [namely, the V2(Vh)? term and
the V - (Vh)3 term in Eq. (A9)] term are both relevant
perturbations and reduce « from 1.5 to 1 and 0.75, re-
spectively in d = (1 + 1) dimensions (while affecting the
value of 3 much less, changing it from 0.375 to 0.33 and
0.30, respectively—finite-size effects on 3 are also usu-
ally much smaller). Our simulation results rule out any
dominant contributions from these nonlinear terms (i.e.,
their coefficients must be extremely small) in finite-size
samples, but these perturbations being relevant (in the
dynamical renormalization-group sense) the asymptotic
exponents should be determined by these nonlinearities.
Unfortunately, in spite of considerable effort, we are un-
able to decisively resolve this issue because numerical ex-
traction of an unambiguous asymptotic a from stochastic
simulation for our model, where z.g =~ 4 making T ~ L%,
is essentially impossible. Further work is needed in this
direction because, as has been noted by a number of au-
thors, a > 1 is physically unacceptable in the thermody-
namic limit. It would imply that the surface width fluc-
tuations, Wy, ~ L%, will exceed the lateral system size
for a large enough sample, clearly indicating a highly un-
stable situation. Any infinitesimal nonlinearity will then
completely dominate the asymptotic growth dynamics.
The problem is not as severe as it sounds in real systems
because typically Wsay < L even for fairly large values of
L. But, we clearly have a theoretical, conceptual problem
that needs to be resolved. We emphasize that no such
problem arises in (241)-dimensional simulations [16, 32]
where the fourth order nonlinearities seem to manifest
themselves in all their glory. The reason for the absence
of nonlinear corrections (or, at least, of an extremely slow
crossover) to the critical exponents in (1+1)-dimensional
epitaxial growth simulations remains a mystery.
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APPENDIX

In this appendix we present several continuum models
which have been proposed to describe dynamic growth.
We intend to summarize here, without any real deriva-
tions, the mathematical aspects of the different growth
models to complement the numerical simulation and the
physical discussion given in the text. We consider a sur-
face growing on a flat substrate, and denote by h(x,t)
the height of the surface at time t above the substrate
site x. The dimension of the substrate is d' = d — 1. We
assume that h(x,t) is a single-valued function of x and
its time evolution is governed by an equation of the form

Oh o+ UV — VO 4+ A(Vh)? + A, VZ(Vh)?

ot
+A, V- (Vh)3+A3(V2h)2+...+n (Al)

where all terms up to fourth order which are consistent
with the symmetry of the problem have been kept and 7 is
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the stochastic noise associated with the incident particle
beam, usually taken to have a Gaussian distribution with

(m) =0,

(n(1)n(2)) = 2D5% (x1 — x2)8(t1 — t2). (A3)

The constant velocity term Ao associated with the av-
erage deposition rate can be removed by choosing an
appropriate moving coordinate system. A geometrical
interpretation of the different terms in Eq. (Al) is at-
tempted in Ref. [15] by Lai and Das Sarma. Here the
noise is assumed to be uncorrelated, but continuous mod-
els of interface growth with correlated noise have also
been studied [33]. If the growth process is conservative,
i.e., a mass conservation law is obeyed, the growth equa-
tion must obey a continuity equation

Oh

9 .

ot J+mn,
where j is a surface current perpendicular to the growth
direction. This form disallows terms such as A\(V k)2 and
A3(VZ2h)? in Eq. (A1), and, in particular, the model by
Kardar, Parisi, and Zhang (8]

Oh _ v, +AM(VRh)2 +1
ot
is ruled out if this conservation law is enforced. The
scaling exponents for the KPZ equation are in (1+1) di-
mensions, 8 = 1/3 and a = 1/2. In (2+1) dimensions,
a numerical integration of the KPZ equation [34] gives
B = 0.25 and a = 0.38 (in the strong-coupling limit
A = o0) in agreement with simulations of discrete micro-
scopic models, 8 =~ 0.24-0.25, o =~ 0.38-0.4. See Refs. [2,
4] for further references on the KPZ equation and related
atomistic models. Typically, overhangs (which lead to va-
cancies) and desorption are the mechanisms that break
the mass conservation law. In “good” MBE growth, va-
cancies and overhangs are not allowed and usually there
is very little desorption. Thus MBE growth may very
well be an example of conservative growth.

The Edwards-Wilkinson equation corresponds to keep-
ing only the lowest-order linear term in Eq. (Al):

Oh

— =uV23h 4+ 1.
ot v +n

(A2)

(A4)

(A5)

(A6)

This linear equation can be solved by Fourier transfor-
mation, and the growth exponents are, in d dimensions,
B = (3—d)/4 and a = (3—d)/2. The only relevant higher-
order term that changes the universal scaling properties
of the EW model is the KPZ nonlinearity (Vh)2. Re-
cently, it was suggested [5, 6, 15] that the linear equation,
which has 8 = (5 — d)/8 and a = (5 — d)/2 with z = 4
given by

oh = -1 V*h 41,

En (AT)
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may be closely related to MBE growth at intermediate
temperatures. Our numerical simulation with model 2
with p; = 0 indicates that, in (1+1) dimensions, 8 =
0.371 + 0.005 and a = 1.32 + 0.04 (z = 3.6). Wolf and
Villain [5] find 8 = 0.365 & 0.015 and o = 1.4 + 0.1
(2 =3.81+0.5).

Lai and Das Sarma [15] proposed the nonlinear equa-
tion
% = —V1V4h + /\1V2(Vh)2 + n
as being relevant to MBE growth. The term A; VZ(Vh)?2
is a relevant correction to the v; V*h term and changes
the growth exponents, rendering a physically more ac-
ceptable value of a in (1+1) and (2+1) dimensions. Using
perturbative renormalization-group technique, they find
B=06B-d)/(T+d)and a=(5—-4d)/3 [z = (7T+d)/3]
Sun, Guo, and Grant [35] studied a similar equation but
with a conserved noise and obtained, in (1+1) dimen-
sions, 8 =1/11 and a = 1/3 (z = 11/3).

The most general conserved equation (up to fourth or-
der) is, however, given by

Oh
ot

(A8)

=vV2h — 1y V2 + M V3(Vh)2 + AV - (Vh)3 4+ 9
(A9)

which contains the EW relaxation term vV2h. Clearly,
the ©V2h term dominates the asymptotic scaling prop-
erties of this equation even though there may be strong
crossover effects arising from the higher-order terms. It
is fair to say that at the present time we do not know
which of these continuum equations, if any, applies to
the epitaxial growth problem. Another possible candi-
date is Eq. (A9) with Ay = 0 (whose asymptotic property
is again dominated by the EW universality). The dy-
namical critical exponents corresponding to each of the
terms in Eq. (A9) are known. [The A,V (V)3 nonlinear-
ity was also solved by Lai and Das Sarma [15] to obtain
B=(05-d)/2(34+d),a=(5—-d)/4, and z = (3 +d)/2.]

We conclude this appendix by mentioning that one
“popular” choice for the conserved equation describing
epitaxial growth with no desorption, overhangs, or va-
cancies seems to be our Eq. (A9) with Ay = 0:

Oh _ W2 — 1y ViR + M VE(VR)? 41

u (A10)

Asymptotic critical properties of this equation are obvi-
ously the same as those of the EW equation, but there
may very well be strong crossover effects arising from the
fourth-order terms. Our (1+1)-dimensional simulations
for 1D MBE growth process as presented in this paper
are consistent with Eq. (A10) with the following caveats
about finite-size and crossover effects: (i) at “low” tem-
peratures, v = v; & A1 = 0; (ii) at “intermediate” tem-
peratures, vy, > v, A1 = 0; and (iii) at “high” tempera-
tures, v # 0.
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